SODIUM IODIDE EFFECTS ON THE HELICAL STABILITY OF A MAINLY ALANINE PEPTIDE

> Theresa Downey BBSI 2009 Mentor: Dr. Jeffry D. <u>Madura</u>

SIGNIFICANCE

- Most diseases are caused by proteins that are defective in function due to a flaw in structure.
- Peptide based drugs may provide a means of treatment for many diseases.
 - Ex. HIV, Cancer
- Knowledge about the stability of protein secondary structure is critical in the development of peptide based drugs.¹

α-helix

¹C. Drahl, C&EN. 86, 18-23 (2008).

INTRODUCTION

- Helical peptides can be stabilized through the addition of salts.
- The stabilization effects specific ions will have on a peptide can be described using the Hofmeister series.

 $H_2PO_4^- > SO_4^{2-} > F^- > CH_3COO^- > Cl^- > Br^- > NO_3^- > I^- > ClO_4^- > SCN^-$

- UVRR and CD found percholrate ions stabilize AP's helical structure².
 - Computationally REMD achieved the same result.
 - ² Xiong K., E.K. Asciutto, J.D. Madura, S.A. Asher, In Preperation. 2009.

SODIUM IODIDE

- I⁻ is a large, low
 charge density ion
 - Chaotrope
 - Disrupts the structure of water

Wikipedia. Sodium iodide.jpg. http://en.wikipedia.org/wiki/File:Sodium_iodide.jpg (accessed July 1, 2009).

MAINLY ALANINE PEPTIDE (AP)

• $AAAAA(AAARA)_3A$

STANDARD MD WATER BOX

System:

- 403 l⁻ (0.2M)
- 1 AP peptide
- Water model TIP3P
- ff99SB force field

Lenard-Jones Potential³

 σ_{ii}

V_{vđW}

 $\mathbb{V}_{vdW} = 4\epsilon_{ij} \left[\left(\sigma_{ij} T_{ij}\right)^{12} \cdot \left(\sigma_{ij} T_{ij}\right)^{6} \right]$

Lennard-Jones Parameters⁴:

• |·

- R_{min}/2 = 2.860 Å
- ε = 0.0536816
 kcal/mol

Na+

³ Force Field Methods. http://www.cup.uni-muenchen.de/oc/zipse/lv18099/mm1.html (accessed July 29, 2009).

Ι

⁴Joung I. S., Cheatham T. E. III. *J. Phys. Chem B.*, **2008**, 112 (30), 9020-9041.

MINIMIZATION

- Minimization is needed to find the equilibrium configuration of the system
 - This corresponds to the global and local minima on the potential energy surface of the system

Water Structures and Science. Protein Folding and Denaturing: Protein Folding. http://www.lsbu.ac.uk/water/protein2.html (accessed July 1, 2009).

1ST EQUILIBRATION

• Peptide Fixed

Temperature increased from 0 to 300K 200ps

1ST EQUILIBRATION LARGE BOX

1ST EQUILIBRATION LARGE BOX

First Equilibration Energies

REMD (REPLICA-EXCHANGE MOLECULAR DYNAMICS)

- Many replicas of a system are simulated simultaneously at different temperatures.
- Replicas "switch" temperatures allowing escape from local energy minima.
- When compared to standard MD the replica exchange method is more efficient.

DETERMINING THE NUMBER OF REPLICAS AND TEMPERATURES

• Number of replicas

- Related to the square root of the total number of atoms in system
 - o 48 replicas

Temperatures

- Geometric function:
 - o 270[1+(273.7-270)/270]^{replica-1}
 - 270K-511.9K

REMD WATER BOX

• Construction

- 1 Peptide
- 13 l⁻ (0.2M)
- 56.21Å X 43.77Å X 44.50Å
- Volume = 109486.824 Å³
- Density = 0.719 g/cc
- Minimization

EQUILIBRATION

EQUILIBRATION SMALL BOX REPLICA 9, 301.1K

Equilibration Temperature

EQUILIBRATION SMALL BOX REPLICA 9, 301.1K

Equilibration Energies

EQUILIBRATION SMALL BOX REPLICA 9, 301.1K

⁵ MacInnes, D.A.; Dayoff, M. O., J. Am. Chem. Soc. 1952, 74, 1017-20.

DISTRIBUTION OF IODIDE AROUND ALANINE AND ARGININE

Alanine

Arginine

DISTRIBUTION OF IODIDE AROUND INDIVIDUAL ARGININE RESIDUES

WHAT'S NEXT...

• REMD Simulation

- Total energy, density, temperature, and pressure are to be analyzed from 2nd equilibration.
- Should all values be satisfactory the system can be submitted for molecular dynamics simulation.

THANK YOU

- BBSI
- Dr. Madura
- Eliana Asciutto
- Kat
 - And her notebook
- NIH/NSF